Visit: www.africona.net/Teacher pizo for Free Past Papers and Notes.

THE UNITED REPUBLIC OF TANZANIA THE PRESIDENT'S OFFICE

REGIONAL ADMINISTRATION AND LOCAL GOVERNMENT MWANGA SECONDARY SCHOOLS EXAMINATIONS SYNDICATE (MWASSES)

FORM FOUR PRE-NATIONAL EXAMINATIONS 2020

TIME 2:30 HOURS

CODE:032/2A

CHEMISTRY (ACTUAL PRACTICAL)

Wednesday 7th Oct, 2020A.M

INSTRUCTIONS

- 1) This paper consists of two (2) questions. Answer all questions
- 2) Each questions carries 25 marks
- 3) Quantitative analysis quidline pamphlets may be used after a thorough check by the supervisor
- 4) Non- programmable calculators may be used
- 5) Write your Examination number (index number) on every page of your answers booklets provided
- **6)** You may use the following constants:

H = 1, C = 12, O = 16, S = 32, Na = 23, K = 321 litre = $1 dm^3 = 1000 cm^3$

1. You are provided with the following

MM: A solution made by dissolving 3.15g of ethanedioic (oxalic) acid with the formula H₂C₂O₄.XH₂O in water to make 500cm³ of solution

NN: A solution made by dissolving 4.0g of sodium hydroxide to make 1 litre of solution

Methyl orange (M.O) indicator Phenolphthalein (P.O.P) indicator

PROCEDURE:

Titrate the solution **MM** (from the burette) against solution **NN** (in the conical flask) using two drops of a suitable indicator. Record your results. Repeat the procedure to obtain three more titre values.

Questions:

- a) Which is the suitable indicator for this titration? Give reasons(s)
- b) Why is it important to vinse the burette with the acid solution before the experiment?
- c) _____ cm³ of **MM** required _____ cm³ of **NN** for complete neutralization
- d) Write the balanced chemical equation for the reaction between **MM** and **NN**.
- e) Determine the value of X in the acid H₂C₂O₄.XH₂O

2. You are provided with sample S containing one cation and one anion. Carry out carefully experiment and record all you observations and appropriate inferences as shown in a table below:

Experiment		Observation	inference
(a)	Observe appearance of sample S		
(b)	Put a little solid sample S in a clean and dry test tube and heat		
(c)	Put a spatulaful of sample S in a test tube, add distilled water,		
	stir and divided the obtained solution into four portions in a		
	different test tubes		
(i)	First portion of the solution of sample S in a test tube add dilute		
	sodium hydroxide slowly till in excess.		
(ii)	Second portion of the solution of sample S add aqous Ammonia		
	solution till in excess.		
(iii)	Third portion add potassium hexacyano ferrate (II).		
(iv)	Fourth portions of solution of sample S, add dilute HCl		
	followed by BaCl ₂ solution.		

\sim			•	
Co	nc	111	CI.	Λn
v		u	71	1711

i.	Cation of sample S is
ii.	Anion in a sample S is

- iii. Molecular formular of sample S is ______
- iv. Write the equations in the experiment (b) and (c) (i)